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Abstract

The hydroelastic response of a two-dimensional very large floating platform (VLFP)
to plane incident wave is investigated for three different cases: infinite, finite and
shallow water depth. An integro-differential equation is presented to describe the
deflection of the platform due to incident waves. Reflection and transmission co-
efficients are obtained as well. We consider the case of a strip and a half-plane.
Numerical results are obtained for various values of the parameters. The results
for the strip and for the semi-infinite platform are compared for different values of
depth.

1 Introduction

The study of the behavior of floating flexible plates on waves obtains great in-
terest. This problem is important thanks to the investigation of the interaction
between large floating platforms (airports etc.) or ice fields and surface waves.
The thickness of the floating objects compared to horizontal parameters is
small and they are modeled as thin elastic plates.

Recently HERMANS [1] derived an exact integral-differential equation for the
deflection of a VLFP at deep water. The equation was solved numerically by
means of a boundary element method and a mode expansion. Later HERMANS
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in [2] and [3] used this formulation to derive boundary condition to apply the
'ray method’ for short wave diffraction.

The short wave expansion of TAKAGI et al. [4] leads to similar results. They
used an eigenfunction expansion method.

The use of the integral-differential equation is more flexible to derive asymp-
totic results than the set of equatins of KHABAKHPASHEVA and KOROBKIN

[5].

TKACHEVA [6] solved this problem by using the Wiener-Hopf technique. The
shallow water problem was solved by STUROVA [7]. She used the bound-
ary integral equations. KiM and ERTEKIN [8] applied eigenfunction-expansion
method for solving this problem.

Here we study the diffraction of surface waves by large floating flexible plat-
form (FFP) of general geometric form which floats on the surface of the in-

compressible fluid of infinite (IWD), finite (FWD) and shallow (SWD) water
depth. Differences of these three cases will be indicated in the paper.

We solve the problem for oblique incident waves (including perpendicular
waves) for two different forms of the platform: an infinitely long strip of fi-
nite width and a semi-infinite plate. For both forms results are obtained and
compared. Reflection and transmission of incoming waves are investigated.

2 Formulation of the problem

The mathematical formulation is derived for the diffraction of waves by FFP
which floats at the surface of an ideal incompressible fluid of depth A which
is varied for different cases. Incoming short waves propagate from the open
fluid (in positive z-direction). We assume waves in still water and introduce
the velocity potential V®(x,y, z,t) = V(x, y,z,t). ®(x,y, z,t) is a solution of
the Laplace equation

AD =0 (1)
in the fluid (z < 0) together with the conditions:
at the bottom z = —h (we use this condition for finite and shallow water)
0P
= = 2
5, =V (2)
and surface conditions at z = 0
o® 0 0P 10°®
gza—qfwhenxepanda—zz—gﬁwhenxef (3)



where w(z,y, z,t) denotes the free surface elevation under the platform. Here
and below in case of the strip of width [ of infinite length 0 < x < [, —00 <
y < oo we define the fluid area —oco < x < 0UIl < x < oo as F, the platform
area 0 < z < [ as P and the dividing surface x = 0 Uz = [ as S (this is
shown in figure 1); whereas for the semi-infinite platform (SIP) 0 < z < oo,
—00 < y < oo respectively Fisx <0, Pisx >0and Sisz = 0.
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Fig.1 Definition sketch of the problem

The platform is assumed to be a thin layer at the free surface z = 0, which
seems to be a good model for a shallow draft platform which is modeled then as
an elastic plate with zero thickness. To describe the deflection of the platform
w we apply the thin plate theory, which leads to a differential equation in the
following form:

2 2\ 2 2
D(a— s %) wamY = Pla,y, 41 (@)

at z = 0 for the platform area z € P, where m is the mass of unit area of the
platform, D is its equivalent flexural rigidity, P is the linearized pressure

P
P = — pgw at z =0 (5)

ot
here p is the density of the water.

For infinite and finite water depth cases we apply the operator 9/0t to (4)
and use the surface condition and (5) to arrive at the following equation for
® at z = 0 in the platform area (z,y) € P:

D(&  &#\' md 0> 1
) (AR AR D e ¥
{pg<8m2+8y2> +pg(’3t2+ }82 g{8t2} 0 (6)

The free edges of the platform are free of moment and shear force, boundary
conditions are:
Pw  0? Pw Bw

w
i Z 7 _ g 9
0x? v oy? 0 and ox3 +(2-v) 0x0y?

=0when z,y €S (7)



where v is Poisson’s ratio.

For shallow water we have also the approximate transition conditions at the
edges of the platform

®,, and ®; continuous at S (8)

where n is the normal to the edge of platform. Physically these conditions
express that the mass of the water is conserved and the energy flux is contin-
uous.

The harmonic wave can be written in the following form

O(z,y,2,t) = ¢(z,y,2)e ™" 9)

The incident wave for the fluid of infinite depth equals

¢inc — _@eiko(m cos B+ysin B)+koz (10)
W

where A is the wave height, w is the frequency and kj is the wave number.
ky = w?/g for IWD and ky = w/+\/gh for the fluid of shallow depth when

incident wave is written as

¢z’nc — _@eiko(m cos f+ysin B) (11)
w

For finite water incident waves equals

_COSh kO(z + h) igA eiko(z cos B+ysin B)

o= cosh kyh w

(12)

where the wave number obeys the dispersion relation kqgtanh kgh = K, here
K = w?/g. Length of incoming waves is A = 27 /ky.

3 Finite Water Depth

In this chapter we derive the solution for finite water for the strip and for the
semi-infinite platform cases.

The fluid domain is split up into two regions with the interface S. The potential
function in F is written as a superposition of the incident wave potential and
a ¢gs(T), which is the sum of classical diffraction potential and radiation
potential, as follows

¢7(T) = ¢"(Z) + o™ (7) (13)



while the total potential in P is denoted by ¢”. It will be shown that this choice
leads to an interesting way to derive an integral equation. At the dividing
surface S we require continuity of the total potential and its normal derivative.

We introduce the Green’s function G(Z, £) that fulfills AG = 478(Z — &), the
free surface and the bottom and the radiation condition. We apply Green’s
theorem to the potential ¢ and ¢ respectively. For z,y € F we have:

47T¢dis _ / ((ﬁdw g a¢d28> ds: 0 = / <¢P8g 8¢P) Js (14)

on 0
SUF sUP

and in the region z,y € P:

0= / <¢dzs g ag:f) ds: 471'ng _ / <¢7’% _g%) (15)

SUF SUP

The integrals over F become zero, due to the zero current free surface condition
for G and ¢%*. We add up the two expressions in (15) and using the free surface
condition for the Green’s function and the potential ¢%* leads us to

47?(/57’:/([(23]%—9[ ﬂ)ds+/<K¢”—¢g’>gdeom,yeP (16)

on
S

where we used the notation [] for the jump of the concerned function. Fur-

thermore we use the jump condition between the potentials ¢%* and ¢” and
their normal derivatives. For the total potential the jumps are zero and then
we obtain

_ ine g a¢mc 62 2
= (om0 o5 (2 5) )0
(17)

where we have used relation (6) for ¢” and introduced parameters D = D/pg,
p = mw?/pg. Relation (17) is suitable for further manipulation to end up with
a differential-integral equation, that can be solved numerically. The Green’s
function itself has a weak singularity, so we may take the limit z — 0 and
use (6) to express ¢ in terms of an operator acting on @¢?. Furthermore we
notice that the first integral on the right-hand side of (17) can be simplified
significantly. This term is independent of the parameters of platform, hence
it is the same if there is no platform present. Therefore it equals 47¢™¢. This



also can be verified by manipulating the integrals.

2 9\’
4W(¢f—ﬂ¢f+7><@+a—y2> ¢f>+

P 0’ 2\ P i
which is valid at z = 0.

Taking into account (3) for the deflection of the platform w we obtain the

following equation
& 9\
(D(@ + 3—y2> — U+ 1>w(:1c,y) =

K 92 02\’ .
— /(D (5—62 + 8—772> = M)w(& mG(z,y; &, n) dédn + Ae™or=F  (19)
’P

The Green’s function obeys the boundary conditions at the free surface and
at the bottom and radiation condition, see HERMANS [3]. It has the form

k cosh kh

. - _9
G(z,y;€,m) J ksinh kh — K cosh kh

Jo(kr) dk (20)

at z = 0 where £’ is contour of integration in the complex k-plane and given in
figure 2, from 0 to 400 underneath the singularity £ = kg, chosen for fulfilling
of the radiation condition, Jyo(kr) - Bessel’s function, while r is horizontal

distance, so r = \/(x —&)?2+ (y —n)%
0 ko

k
|
. - =~
—/ -
Fig.2 Contour of integration

As first case the strip is considered. The deflection of the platform is repre-
sented as a superposition of exponential function in the following form

w(x, y) = Z (aneinnw + bnefinnw)eikoysinﬂ (21)

n

at z =0 for 0 < 8 < m/2 where "amplitudes’ a,, b, and reduced wave numbers
kn, Will be determined. For the description of the connection between platform
deflection and potential we use first condition of (3). Later we will see that
inhomogeneous term behaves like e*0® does not indicate that the solution
behaves accordingly.



We insert the Green’s function in (19). To carry out integration with respect
to n we use the Sonine-Gegenbauer expression for Bessel’s function Jy(kr):

7 0 if k<b
/cos(bt)Jo (k\/ a’ + tz) dt =19 osavi™ 1
) W if k > b

(22)

Now we integrate with respect to & and obtain

(n)4 _ 1KnT —iKnT . n (TL)4 -

3 (on 1) (w7 ) =08 (2 )
cosh kh piz/k?—kg sin® B p—iar /7K sin B

z ksinh kh — K cosh kh (anl k2 — k2sin? B — Ky, - k2 — k2 sin25+/~€n]

eiwy /k2—kZsin? 8 e—iav\ /k2—kZsin? 8 ‘| )
— X
VK2 — k3 sin? B + K, k2 — k3 sin® B — K,

k dk + Aeikowcosﬂ (23)
k2 — k2 sin® B

b

Here k(™ is defined as

k™ = (/K2 + k2 sin’ B (24)

The coefficient b in expression (22) corresponds to kg sin 3. The contribution
of the integral along the branch cut must be zero. We assume that the poles

at \/k2 — k2 sin? 8 = K, are in the upper half-plane and we apply the residue
lemma at these points. Then dispersion relation for £ for finite water depth

follows
(Dr* — i+ 1)k tanh kh = ko (25)

which has such solutions in the complex plane: two at the real axis +x™), at
the imaginary axis +x™, n = 4,5... and four in the complex plane +x®,
+£®). For comparison of numerical results for different cases we are taking
into account 3 roots (such as for next cases) which are physically realistic
solutions for xk and are situated in the upper complex half-plane: real positive
root (M and two complex roots ® and x® with equal imaginary parts and
equal but opposite-signed real parts.

We determine a value of critical angle of incidence. Angle becomes critical
when ; (corresponded value to real positive root k(1) of dispersion relation)
is equal 0, so

sin B, = kY /kg (26)



Now we consider the zeros of the dispersion relation for the water surface
ko tanh kgh = K. Our restriction to 3 roots implies that we take into account
only one root of ky!. That leads us to the relations for the determination
of the ’amplitudes’ a,, and b,. We insert (21) in (23) and obtain two linear
relations:

i (DR™* — 1) ko K ( n
k™ — _
n=1 @ (K(l — Kh) + k%h) (K, — ko cos 3) cos B
b
(Kn + ko cos B) cosﬁ) * 0 (27)
and
> koK a e'mnl
D™’ — 0 ( - k +
7;1( ,u) (K(l — Kh) +k§h) (K, + ko cos ) cos

bne—innl

(Kn — ko cos B) cosﬁ) =0

(28)

Boundary conditions are the same for all values of depth. For the strip we get
4 equations from boundary conditions at both edges x = 0 and = = [. The
zero moment condition leads to:

3

> (/{i + vk} sin® B) (an +b,) =0 (29)
n=1
and
3
> (mi + vkg sin? B) (anei"“"l + bne_i’“"l) =0 (30)
n=1

The zero shear force condition leads to:

3
> (/ii + (2 — v) Ky kg sin® B) (@, —by) =0 (31)
n=1

and

3 . .
Z (be + (2 — V) Ky, k§ sin® B) (anem"l — bne*“‘"l) =0 (32)

n=1

Together with conditions (27) and (28) we have 6 equations. The solution of
this system gives us values of the deflection components a,, and b,. Reflection

1 In principle more roots can be taken into account; in most cases the arrived
accuracy is sufficient.



and transmission coefficients can be computed by adding up the two expres-
sions in (14) and contribution of the pole k = k¢ in region z < 0 and = > [
respectively. We obtain for the reflection coefficient | R| which is the amplitude
of the reflected wave:

. koK (i ( (DR — )a (ettosenn _ 1)

(K — K?h + k2h) \ = (5 + ko cos B) cos
3 (D,@(n)‘* _ u) b
" (pilko—rn)l _
n;l (Kn, — ko cos ) cos 3 (e 1)) (33)

and for the transmission coefficient 7" - the amplitude of the transmitted wave:
koK 3. (D™ — p)a, .
T=1+ 0 (Z ( '“) (efz(kofrw)l _ 1)+
(K — K2h + k2h) — ko cos ) cos 3

; Dﬂ(n) —H bn —1 K
g Hf-ﬁ- ko cos 5))cos,6 (e ot~ 1)) (34)

Values of R and T will be determined for every case of depth and compared.

For the semi-infinite platform, the method described above is used whereas
deflection is written in the form

w(x’ y) — zaneinnw+ikoysinﬂ (35)
n
We are dealing with same Green’s function, dispersion relation, x,, 8... Then
we arrive to (27) without b,-term and 2 boundary conditions at z = 0 which
are

3
> (/fi + vk sin® B) a, =0 (36)
n=1
and
3
Z (lﬁ + (2 — )k ks sin ﬁ)an =0 (37)

After solving the system of 3 equations we obtain 3 components of the deflec-
tion. R, - reflection coefficient for the semi-infinite platform can be computed
by (33) without b,-term.

When § > .. our model remains valid. In this case we have three evanescent
modes. R = 1 and 7" = 0 and the platform is deflected only near the edge
z=0.

Finite water depth case is general case. By taking the limit h — co we arrive
to IWD case and the limit ~ — 0 - to SWD case including transition from



dispersion relation (25) for finite water to dispersion relations for infinite and
shallow water respectively.

4 Infinite Water Depth

In this chapter the solution will be derived for infinite water. The way to
obtain this solution will be based on the previous chapter but here we have
some specialities. At first, wave number and potential of incoming waves for
infinite water that is shown in (10) are different from FWD case.

By analogy way we split up fluid region, introduce the Green’s function and
obtain the expressions (16), (17) and (18) but with kg except the K. Finally
we obtain an integro-differential equation for the deflection of the platform on

infinite water:
o2 92\
(’D(@ + ﬁ) - /L+ 1>w(x,y) =

k 2 .
ﬁp/(D ((9—52 + 3—772) - u)w(£, mG(z,y,&n) dédn + ¢3¢ (38)

The Green’s function obeys the boundary condition at the free surface and
radiation condition, see WEHAUSEN and LAITONE [9]

(a3 €m) = =2 [ = olkr) di (39)
ﬁl

at z = 0, where £" and Jy(kr) are described in previous chapter.

Case of the strip. The deflection of the platform is described by (21) with
n = 3 for same ’amplitudes’ a,, b,, reduced wave numbers «,, and S,,.

If we insert the Green’s function to (38) and integrate with respect to £ and
1 then we obtain

> (D/{(")4 -+ 1)) (anei""“ + bnei""w> =iy ;{_701 (D/{(")4 — ,u) X

n n

/ k < l e k2—kZ2sin? 8 et k2—kZ2sin” B ‘|
L (k= ko)\Jk? — kZsin® B k2 — k¢sin® 8 — K, \/kQ—kSSin2ﬁ+/§n

l iz\/k2—k2 sin? B iz\/k>—k2 sin? B

\/ k2 — k3 sin? ﬁ-i—lin k2 — k3 sin? B — K,

10

‘|>dk+Aez’kowcosB (40)



Here k(™ are roots of dispersion relation which is written for infinite water as
(Dr* = p+ 1)k = Lk (41)

We take into account 3 physically realistic roots for x and they are same with
real root k(! and two complex roots k2, k(® from finite water case. Here we
neglect the contribution along the imaginary axis of the k-plane, after closing
the contour of integration.

We consider the zeros of the dispersion relation for the water surface and insert
(21) in (40) and obtain two linear relations:

> (DE™* — 1)k <( O br ) +A=0

= Kn — ko cos 3) cos 3 B (Kn + ko cos 3) cos 8
(42)

and

S (R iy (= et
n=1 Ky (Kn + kocos B) cos B (kn — kocos B)cosB)
(43)

Together with boundary conditions (29)-(32) we have 6 equations for finding
the ’amplitudes’ a, and b,. The solution of this system gives us values of
the deflection. Reflection and transmission coefficients represented by such
formulas:

. 3 (Dm(")4 — ,u) koay,
B ; (K, + ko cos ) cos 3

y (DE™" — 1) kobn

>

n=1

(ei(k0+nn)l B 1)+

i(ko—kn)l _
(kn — ko cos () cos 3 (e 1) (44)

and

T—1+ i (('D/{(n)4 . ,u)koan (e—i(ko—nn)l B 1>+

1 (Kn — ko cos ) cos 3
i (Dﬁ(”)4 — u) koby,
(Kn + ko cos 3) cos B

n=1

(e*i(k0+ﬁ,n)l _ 1) (45)

For the semi-infinite platform deflection is written in form (35). We arrive
by same method to (42) without b,-term and 2 boundary conditions at z = 0
(36) and (37). Reflection coefficient can be computed by (44) without b,,-term.

11



5 Shallow Water Depth

Here the solution will be derived for shallow water. It will be based on tran-
sition conditions and that is difference from FWD and IWD cases.

For the platform which floats on fluid of shallow depth in accordance with the
derivation of the shallow water theory by STOKER [10] we have the approxi-

mation condition
0? 0?
b, =—h|=—+—-—10 46
h(@xQ + 8y2) (46)

The harmonic wave is written as (9) and then from (3) by using of (46) and
(9) can be obtained

Qi+fi(w—ﬁ¢—o eF (47)
63?2 ayg 0=V, T,y
and
0? 0? w
(w—ka—?ﬂ)(b—zw—&x,ye? (48)

The general solution of (47) and the conditions at oo leads to:
¢($, y) — Beiko(zcosﬁ—l—ysinﬂ) + Re—ik0$COS ,B—I—ilcoysin,B’ <0 (49)

where the first term represent a progressed wave moving to the right and
second - reflected wave moving to the left.

gb(:c,y) — Teilco(mcos,b’—f—ysin,b’)’ > (50)
where right part represent the transmitted wave.

Insertion of condition (5) to equation (4) and using of (48) leads us to the
differential equation for ¢” - total potential under the platform:

DA*@” + (1 — p)A¢” —kigp” =0, z,y € P (51)
For the open fluid surface we have (47).

Transition conditions written in the following form

067 ¢~
P_F 7 _ZF
¢ _¢ ) 8’]7, anaxayes (52)

Deflection is written in form (21) for same with previous chapters ay,, by, £n
and f... For shallow water case the connection between platform deflection

12



and potential described by (48). Dispersion relation is
(Dr* — p+1)K* = k3 (53)
We use three roots which lies in the upper complex half-plane.

Reflection R and transmission 7' coefficients will be find at once with the
deflection components. Such way for the definition of 6 components of the
deflection and coefficients of reflection and transmission we need system of
8 equations. We have already 4 from boundary conditions (29)-(32). Rest 4
equations can be obtained from transition conditions (52) at both edges of the
platform. Due to (49) and (50) we have at = 0:

3
14+ R=—25(an +b) (54)
Zh n=1
and
w 3
ikocos f(1 — R) = — Z itin (an — by) (55)
n=1
and at x = [:
ikol cos B w iknl ™
tkolcosfp __ 1Kn —tKkn
Te =—= ngl (ane + bue ) (56)
and
. w 3 B .
ikq cos BT eolcsh — - > ik (ane“‘"l - bne_m"l) (57)
n=1

We obtain values of w, R and T after solving of the system (29)-(32), (54)-(57).

Deflection and reflection coefficient for the SIP can be obtained by same way
also. Then deflection presented as (35). From transition condition (52) and
(49) we obtain conditions (54)-(55) at the edge x = 0 without b,-terms. Rest
2 equations are boundary conditions (36)-(37). After solving of the system we
obtain 3 components of the deflection and reflection coefficient R,, for the
SIP.

6 Results. Their Comparison and Discussion

We give results for the deflection of the strip and of the semi-infinite platform.
In figures 3-5 we show the results for both forms of the platform for different
values of angle for IWD, for FWD and for SWD respectively.

13
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Fig.3 Comparison of the results for the deflection w for the strip and SIP for
D/pg = 10°m*, for B =0° (a) and for B = 15° (b) for IWD
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Fig.4 Comparison of the results for the deflection w for the strip and SIP for
D/pg = 10°m*, for B = 0° (a) and for B = 15° (b) for FWD (h = 10m)
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Fig.5 Comparison of the results for the deflection w for the strip and SIP for
D/pg = 10°m*; 8 =0° in (a) and B = 10° in (b) for SWD (h = 1m)

0

In figure 6 we show comparison of the results for the strip deflection for dif-
ferent wavelengths. Results are shown for three values of depth for zero angle
of incidence.

In figures 7-8 we compare the results for the deflection of the strip and of the
semi-infinite platform for same wavelength and depth for FWD and for IWD
cases. For each form of the platform results are presented for 4 different values
of incident angle.

In figure 9 we compare results for flexural rigidity D/pg = 10’m* for TWD and

14
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Fig.6 Results for the strip deflection for D/pg = 10°m*, h = 1,10, 100m
for A = 0.3l (a) and A = 0.5( (b)
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Fig.7 Results for the deflection for D/pg = 10°m*, h = 10m, A = 0.5l
for the strip (a) and for the SIP (b) (finite water depth)

m W/ AL
[ i __ B=0°
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B =30°
“““ B = 45°
0.6 ‘ ‘ ‘ ‘ 0.6 s ‘ ‘ ‘
0 0.2 0.4 0.6 08 z/l 0 0.2 0.4 0.6 08 =/l
Fig.8 Results for the deflection for D/pg = 10°m*, \ = 0.5]
for the strip (a) and for the SIP (b) (infinite water depth)
FWD cases.

In figure 10 we show results for finite water for different values of 8 including
B > B.. As we note before in such cases our model remains valid.

In figure 11 we show the results for reflection and transmission coefficients for
FWD and for SWD cases. As we can see, the peaks of the reflection coefficient
for SWD much higher then for FWD which are quite close to graphic for IWD

case.

Wave energy is conserved, up to a high degree of accuracy |R|*+|T|? = 1.
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Fig.9 Comparison of the results for the deflection for the strip and SIP for
D/pg = 10"m*, 8 = 0° on infinite (a) and finite (h = 100m) (b) water
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Fig.10 Results for the deflection for D/pg = 105m*, h = 100m, A = 0.3!
for the strip (a) and for the SIP (b) (finite water depth)
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Fig.11 Reflection and transmission coefficients for D/pg = 10°m*, B = 0° for
h =100m (a) and h = 1m (b)

In figure 12 we demonstrate the influence of the number of roots of dispersion
relation. Results are compared for 3 values of wavelength. In the lower graph
in 12a the wave depth can be considered to be infinite (wavelength is 30m while
depth is 200m). The difference between results is large near the edges of the
strip. All other graphs correspond to the finite depth case. Here the differences
of the results are small, especially if we consider the case of small depth.

In [3] HERMANS compared for the finite depth case the results obtained by
presented approach with the results of TAKAGI et al. [4] who used an eigen-
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Fig.12 Comparison of the results for D/pg = 10°m*, 8 = 0° for 3, 10, 20 and 50
wave modes, h = 200m (a) and h = 10m (b)

0

function expansion method. For case of the infinite depth, in [2], numerical
results were compared with the results obtained by using the Wiener-Hopf
technique in TKACHEVA [6]. In the same paper a comparison is presented
with the results obtained by boundary element computations in HERMANS
[1]. Comparison proves accuracy of present method.

7 Conclusions

We have shown results for three different situations. In the IWD case and the
FWD case the results are obtained by means of an analysis of the integro-
differential equation. For comparison in each method three modes of the de-
flection are considered, one traveling and two evanescent modes. In the SWD
case major simplification is the shallow water approximation. From our nu-
merical results it is shown that all these approximations are consistent with
each other. In the transition from one case to the other the numerical values
show a continuous behavior.
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