Initiated Wave Field

Initiated Wave Field (Pattern).

Free surface displacement generated by plate motion.
General description.
Free surface elevation in the open fluid \mathcal{F} equals to a sum of the incident wave elevation and the additional wave elevation, generated by the plate motion

$$
\begin{equation*}
\zeta=\zeta^{i n c}+\zeta^{p m} \tag{1}
\end{equation*}
$$

The total potential in \mathcal{F} is also represented as a sum of the incident wave potential and the potential of waves, arising from the plate presence

$$
\begin{equation*}
\phi^{\mathcal{F}}=\phi^{i n c}+\phi^{p m} \tag{2}
\end{equation*}
$$

here $\phi^{p f}$ is the classical diffraction potential plus radiation potential.
In polar coordinates

$$
\begin{equation*}
\zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}+\frac{K}{4 \pi} \int_{\mathcal{P}}\left\{\mathcal{D} \Delta^{2}-\mu\right\} w(r, \theta) \mathcal{G}(\rho, \varphi, 0 ; r, \theta, 0) d S \tag{3}
\end{equation*}
$$

$d S=r d r d \theta$

Circle

$\mathcal{F}: r>r_{0}$.
IWD

$$
\begin{gather*}
\zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}-2 \pi i r_{0} \sum_{m=1}^{M} \frac{k_{0}^{2}}{\left(k_{0}^{2}-\kappa_{m}^{2}\right)}\left(\mathcal{D} \kappa_{m}^{4}-\mu\right) \\
\times \sum_{n=0}^{N} a_{m n}\left[k_{0} J_{n+1}\left(k_{0} r_{0}\right) J_{n}\left(\kappa_{m} r_{0}\right)-\kappa_{m} J_{n}\left(k_{0} r_{0}\right) J_{n+1}\left(\kappa_{m} r_{0}\right)\right] J_{n}\left(k_{0} \rho\right) d k . \tag{4}
\end{gather*}
$$

FWD

$$
\begin{gather*}
\zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}-2 \pi i K r_{0} \sum_{m=1}^{M} \sum_{i=0}^{M-3} \frac{k_{i}^{2}}{\left(k_{i}^{2}-\kappa_{m}^{2}\right)\left(k_{i}^{2} h-K^{2} h+K\right)}\left(\mathcal{D} \kappa_{m}^{4}-\mu\right) \\
\quad \times \sum_{n=0}^{N} a_{m n}\left[k_{i} J_{n+1}\left(k_{i} r_{0}\right) J_{n}\left(\kappa_{m} r_{0}\right)-\kappa_{m} J_{n}\left(k_{i} r_{0}\right) J_{n+1}\left(\kappa_{m} r_{0}\right)\right] J_{n}\left(k_{i} \rho\right) d k \tag{5}
\end{gather*}
$$

Ring

Free surface elevation in the open fluid $\mathcal{F}_{0}\left(r>r_{0}\right)$ and gap $\mathcal{F}_{1}\left(r<r_{1}\right)$ regions. We continue the analysis of plate-water interaction and consider open fluid inside of the ring \mathcal{F}_{1}. The elevation $\zeta(\rho, \varphi)$ of the free surface in the gap can be computed by (1), where the value of $w^{\text {inc }}$ may be obtained from incident wave potential expression with use of kinematic condition and the value of $w^{p f}$ - from analysis of IDE in the gap area.

If we are dealing with FWD case, the free surface elevation in the gap, after use of residue lemma at th poles $k=k_{i}$, takes the form

$$
\begin{align*}
& \zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}-K \int_{-\infty}^{\infty} \sum_{m=1}^{M}\left(\mathcal{D} \kappa_{m}^{4}-\mu\right) \frac{J_{n}(k \rho)}{\left(k^{2}-\kappa_{m}^{2}\right)} \\
& \times \sum_{i=0}^{M-3} \frac{k_{i}^{2}}{\left(k_{i}^{2} h-K^{2} h+K\right)\left(k-k_{i}\right)}\left[a_{m n} c_{m n}^{(1)}+b_{m n} c_{m n}^{(2)}\right] d k \tag{6}
\end{align*}
$$

As we are at the gap area $\mathcal{F}_{1} \rho<r_{1}<r_{0}$. Therefore, the contour of the integration can be closed by splitting up of Bessel functions $J_{t}\left(k r_{i}\right), t=n, n+1, i=0,1$, into half-sums of corresponding Hankel functions. Finally, for the elevation in the gap we obtained the following expression

$$
\begin{gather*}
\zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}-2 \pi i \sum_{m=1}^{M}\left(\mathcal{D} \kappa_{m}^{4}-\mu\right) \\
\times \sum_{i=0}^{M-3} \frac{k_{i}^{2} K}{\left(k_{i}^{2} h-K^{2} h+K\right)} \frac{J_{n}\left(k_{i} \rho\right)}{\left(k_{i}^{2}-\kappa_{m}^{2}\right)}\left[a_{m n} f_{m n i}^{(1)}+b_{m n} f_{m n i}^{(2)}\right] d k \tag{7}
\end{gather*}
$$

where introduced functions $f_{m n i}^{(q)}$ are

$$
\begin{gather*}
f_{m n i}^{(q)}=r_{0}\left[k H_{n+1}^{(1)}\left(k_{i} r_{0}\right) H_{n}^{(q)}\left(\kappa_{m} r_{0}\right)-\kappa_{m} H_{n}^{(1)}\left(k_{i} r_{0}\right) H_{n+1}^{(q)}\left(\kappa_{m} r_{0}\right)\right]- \\
r_{1}\left[k H_{n+1}^{(1)}\left(k_{i} r_{1}\right) H_{n}^{(q)}\left(\kappa_{m} r_{1}\right)-\kappa_{m} H_{n}^{(1)}\left(k_{i} r_{1}\right) H_{n+1}^{(q)}\left(\kappa_{m} r_{1}\right)\right], \quad q=1,2 \tag{8}
\end{gather*}
$$

In general, for infinitely deep water the procedure is the same, but with the pole $k=k_{0}$ only. We derive the following equation for the elevation

$$
\begin{equation*}
\zeta(\rho, \varphi)=A e^{i k_{0} \rho \cos \varphi}-2 \pi i \sum_{m=1}^{M}\left(\mathcal{D} \kappa_{m}^{4}-\mu\right) \frac{k_{0}^{2} J_{n}\left(k_{0} \rho\right)}{\left(k_{0}^{2}-\kappa_{m}^{2}\right)}\left[a_{m n} f_{m n 0}^{(1)}+b_{m n} f_{m n 0}^{(2)}\right] d k \tag{9}
\end{equation*}
$$

